-

Creating Computer-based Instructional Animations

Donald W. Hall

Abstract

Computer-based animations can enhance learning in lec-
ture courses by maintaining student attention, by making
material more interesting, and by adding dynamic visual re-
inforcement to verbal commentary. Simple frame and path
animations may be created without the requirement of com-
puter programming skills. More sophisticated animations may
be produced with multimedia authoring software packages
that have relatively simple programming (scripting) lan-
guages.

Introduction

Animation is the phenomenon wherein two or more static
objects are presented in a manner that results in the percep-
tion of real motion. Animation also could include flashing or
cycling of colors of text or graphic objects

Rieber (1994) listed the following five applications for in-
structional graphics: cosmetic, motivation, attention gain-
ing, presentation, and practice. Animations have the same
potential applications with possible increased effectiveness
due to motion. Research on the pedagogical effectiveness of
animations is fraught with difficulties, and results have been
mixed. Rieber (1994) provides an excellent review of the re-
search literature on animation. At the least, cosmetic anima-
tions can add a professional appearance to lecture presenta-
tions and send the message that the instructor cares enough
about the course to take the time to create animations. Also,
motion is known to be a powerful force in maintaining atten-
tion (Strauss, 1991). However. inappropriate use of anima-
tions also may distract the learner by attracting attention away
from the desired focal point of the screen.

I have been using a multimedia approach to teaching a
large enrollment lecture course in entomology to undergradu-
ate liberal arts students since the spring semester of 1994.
One component of the multimedia is a series of animations 1
have created to illustrate various biological concepts and in-
sect behaviors. My students love the animations and ask me
to include more of them in the course. They frequently com-

Hall is a professor in the Department of Entomology & Nematology,
P.O. Box 110620, University of Florida, Gainesville, FL 32611-0620,
(352) 392-1901, ext. 113; FAX (352) 1901; e-mail
dwh@gnv.ifas.ufl.edu.

ment on their course evaluations that the animations help
them learn.

This paper describes techniques for creating simple com-
puter-based animations.

Time Required

Considerable time is required for developing ideas for ani-
mations and trying to visualize how they should work to il-
lustrate the desired lesson. This part of the process often oc-
curs throughout the day during other activities that do not
require active thought. [often take several weeks of inter-
mittent thought before I figure out how to do a particular
animation.

The time required for actual creation of animations de-
pends on the complexity of the graphics and whether pro-
gramming is required. The greatest commitment of time is
required for creation of the graphics to be animated. Com-
mercially available clip-art may be edited for some anima-
tions. Otherwise, the graphics must be drawn by an artist or
the animator. It may be possible to recruit artistically tal-
ented students to draw the graphic images for credit. For my
most complex animation, graphics production required ap-
proximately two weeks. After the images are drawn, they must
be scanned and exported in a format that can be imported
into the appropriate animation software.

Typically, 4-8 hours of programming time per animation
is required. Much of this time is spent in “fine-tuning” the
animation.

Hardware and Software Requirements

Animations may vary considerably in their sophistication
and in the complexity of the graphics used. Complex anima-
tions may run very slowly on a computer with a slow proces-
sor. For this reason, at least a 486 processor (or equivalent
Macintosh) is recommended.

Software ranges from simple presentation packages to
more sophisticated animation software or multimedia
authoring packages. Software packages are periodically re-
viewed in computer magazines and trade journals. It may be
helpful to select software for which technical support is pro-
vided by one’s institutional teaching resource center. A spe-
cialized graphics software package will also be helpful for

NACTA Journal = June 1996

modifying graphics and for importing and exporting various
graphic file formats.

Animation Techniques

Frame Animation

Frame animations work like the old “flip book” anima-
tions. Images and/or their positions are changed gradually
on successive screens. The animations are played by rapidly
advancing through the screens either manually or with a
timer. This type of animation may be created even with simple
presentation software packages. A disadvantage is that it may
be impossible to run the animation at a sufficient rate of
frames per second for the motion to appear acceptably smooth
{depending on processor speed and the number and com-
plexity of graphics per screen). The simplest way to create
this type of animation is to put all the images to be used on a
single screen and make additional copies of that screen equal
to the number of steps in the animation. Then beginning at
the final screen and working backward through the screens,
successively select and delete the unneeded images on each
screen. The first screen to have images deleted will then be
the final screen in the actual animation. When the animation
is completed, the composite slide can be deleted. This method
has the advantage that the images may be accurately posi-
tioned in relation to each other, Screens five, eight, eighteen
and the composite screen of an eighteen frame firefly anima-
tion created in Microsoft PowerPoint® is illustrated in Figure
1.

Animation Recorders and Path Animation

Some software packages have animation recorders and/or
path animation features. Animation recorders record certain
user actions (e.g.. clicking and dragging a graphic object with
the mouse). The same sequence of actions is then repeated
after an appropriate triggering event — typically when the
graphic is clicked with the mouse. Software with path ani-
mation capability allows one to draw a path with the mouse
and store this information as an animation file associated with
a specified graphic (Fig. 2). The graphic will then follow the
path when the animation is “played.” It also may be possible
to specify the speed of the path animation and the number of
times it runs with each triggering event.

Programming-based Object Animations

Possibly the most useful animation technique for biology
faculty is programming-based object animation. In object
animations, the graphic images (objects) themselves are ani-
mated by hiding, showing, moving, resizing, reshaping or
recoloring them.

This author currently uses a high end multimedia
authoring package called Asymetrix™ Multimedia Toolbook™
(MMTBK) for IBM compatibles, that has its own high level
programming language (OpenScript®). MMTBK uses books
and pages as metaphors for files and screens. In MMTBK, ev-
ery object placed on the screen may have a programming

NACTA Journal = June 1996

¥ (% g
\ J “ el =
PR “g ~
Composite Frame 5
J"\ L
T v
Frame 8 Frame 18

Figure 1. Composite and frames 5, 8, and 18 from
firefly frame animation created in Microsoft
PowerPoint.

Anifation: :2 of Groug Phumble 2835

Figure 2. Path animation window with points on
animation path created by clicking the mouse.

script associated with it. Upon the specified triggering event
(typically a mouse click), the script is executed. Each object
in MMTBK has “position” (screen address [x.y coordinates|
of upper left hand corner of object) and “"bounds” (screen
address of upper left and lower right hand corners of object)
properties (Fig. 3). These properties are specified in MMTBK
page units. One MMTBK page unit equals 1/1440 inch. The
position property may be manipulated with the “move” or
“set” commands to change the location of an object on the
screen. The bounds property may be changed with the set
command to modify the location, size or shape of an object
during an animation. Scanned or clip-art graphics also may

be animated with MMTBK’s “hide”, “show™, and “move" com-
mands.

Other features that are useful for creating animations are
programming control structures. OpenScript control struc-
tures are similar to those of traditional lower level program-
ming languages (e.g., Basic, Pascal and C); only the syntax
differs. The MMTBK control structures as described by Pierce
(1990) are:

If — Executes one statement or series of statements if a con-
dition is true. Executes another statement or series of state-
ments if a condition is false.

Conditions — Executes a statement or series of statements
when a specific condition is met.

Step — Executes a statement or series of statements a prede-
termined number of times.

Do — Executes a statement or series of statements until a
condition is true.

While Executes a statement or series of statements re-
peatedly while a condition is true.

Other programming-based multimedia software packages
(e.g., Apple HyperCard™) have similar capabilities to those
of MMTBK but have slightly different programming syntax.

The following example of an object animation to demon-
strate ladybird beetle defensive allomone (a defensive chemi-
cal) was created with MMTBK. In this animation, an ant walks
across the screen and bites the ladybird on the leg. The lady-
bird reacts by releasing a repugnant defensive chemical
allomone from the leg joint. The ant retreats and grooms the
allomone from its body. To make the ant walk in two direc-
tions requires two ant bodies (one facing right and one left).
Each body has two sets of legs in slightly different positions
“grouped” onto it. Each set of legs is named and alternately

L

EX3

%,

Position = 1935,1325
Bounds = 1935,1325,3388,2912

‘
Qi,@

Position = 56895,3800
Bounds = 6895 3800,7348 5387

G

Figure 3. Position and bounds properties of two
bumble bee graphics on a Multimedia
Toolbook page.

shown and hidden as the whole group is moved across the
screen with move commands by changing a variable repre-
senting the x coordinate of the group’s position property in a
do/until loop. The allomone droplet is made to increase in
size by incrementing variables in the bounds property of an
ellipse that was drawn with the MMTBK drawing tools. Fro-
zen images from the animation are shown in Figure 4.

The script that runs the ladybird beetle animation is asso-
ciated with a button beneath the ladybird labeled “Reflex
Bleeding.” The parts of the script that cause the ant to walk

4 S

Figure 4. Frozen images from object animation of the action of ladybird beetle defensive allomone.

10

NACTA Journal = June 1996

=) Script for Button id 0 of PAge 1

&l 'Sciipt for Button'id 0 of Page 1

File Edn Format Yiew Window Help

TN T SN——
Bl (=[x a2 2ié) @mlc) &

to handle buttonClick
system start_ant
set start_ant to -2255
shov group "antright®” — =sright-facing ant body
do -- moves ant across screen
pause 5
hide group “legs2”
move group "antright”
show group "legsl”
increment start_ant by 200
pause S
hide group "legsl®
shov group "legs2"
move group "antright® to start_ant, 1395
increment start_ant by 200
until start_ant=574S

to start_ant.139S

Figure 5. Script window with portion of programming
script causing ant to walk from right to left in
ladybird beetle defensive allomone animation.

from left to right and the allomone droplet to grow in size
are shown in Figures 5 and 6. respectively.

Programming-based object animation is useful for a wide
range of animation applications and typically results in a suf-
ficiently rapid display of objects with present processor speeds
to give relatively smooth motion. The major disadvantage is
the requirement for learning a scripting language.

Animations have potential value in a wide range of agri-
culture and natural resources courses. It is hoped that this
paper will encourage others to create animations for their
courses.

Acknowledgments

Fireflies with their wings folded in Fig. 1 and the ladybird
beetle in Fig. 4 are CorelDraw™ clip-art images that were
edited by the author. All other graphics images were drawn
by Margo Duncan. Ms. Duncan was hired on funds from a
multimedia grant to the author from the University of

NACTA Journal m June 1996

[~ %
File Edit Format View Window Help

show ellzpse “droplet”

shov group “"allomone”
Eysten dropletx, droplety.q
dropletx=7170
droplety=2490

q=1

do --causes allomone droplet to grow
set syslockScreen to “"true” i)
increment dropletx by -10 i
increrent droplety by -8 !
increment q by 1

set bounds of ellipse "droplet” to\ gi
dropletx.droplety. 7305, 2625 o
set sysLockScreen to "false” i
pause 15 i

Figure 6. Script window with portion of programming
script causing allomone droplet to grow in
ladybird beetle defensive allomone animation.

Florida's Office of Instructional Resources and a grant from
the Office of the Dean for Academic Programs of the College
of Agriculture. The time commitment for creation of the ani-
mations would not have been possible without the support of
my Department Chairman, John Capinera, and Dean for Aca-
demic Programs of the College of Agriculture, Larry Connor.

References

Anonymous. (1994). The Concise Guide to Multimedia. Belleview,
Washington. Asymetrix Corporation.

Pierce, J.R. (1990). Toolbook Companion. Redmond, Washington.
Microsoft Press.

Rieber, L.P. (1994). Computers, Graphics, and Learning. Dubuque,
Towa: William C. Brown Communications, Inc.

Strauss, R. (1991). Design blueprint: some basics of screen design
for television-based multimedia. Multimedia & Videodisc Moni-
tor (Novermnber 1991). p. 24-28.

11

