Instructional Resources to Teach Science Concepts While Promoting Careers in Horticulture

Nicole Martini

Kimberly Williams, Gaea Hock, and Chad T. Miller

Department of Horticulture and Natural Resources

Department of Communications and Agricultural Education

Context

- Limited awareness of horticulture and its diversity of careers (Meyer, 2015)
- 59,700 agriculture sector job openings annually, 35,400 U.S. students will graduate with a B.S. or higher to fill them (Goecker et al., 2015)
- Decline of students enrolled in horticulture baccalaureate programs across US (Dole, 2015)

Introduction

- Our SPECA Project
 - Secondary Education, Two-Year Postsecondary Education, and Agriculture in the K-12 Classroom Challenge Grants Program
 - Creation of web based online instructional units focusing on STEM and encouraging careers in horticulture
 - Science and Technology in Horticulture
 - Hydroponic Food Production
 - Light Quality and Plant Responses
 - Support high school Science and Agriculture teachers
- Assessing teachers' likelihood to adopt curriculum
- Assessing youths' understanding and enthusiasm for STEM and careers in horticulture

Project Goals Support National Initiatives

- Supports national initiative Promoting Horticulture in the United States
 - Seed Your Future
 - ASHS
 - AHS
 - APGA
 - NJHA
 - Longwood Gardens
 - AmericanHort
 - Online national survey showed 54% of respondents consider Horticulture Education/Awareness the biggest challenge facing the horticulture industry (Meyer, 2015)

Project Scope

- Survey Agriculture and Science teachers
 - Also surveyed FFA youth who competed in State Floriculture CDE
- Develop content for instructional units
 - Science and Technology in Horticulture
 - Hydroponic Food Production
 - Light Quality and Plant Responses
- Implement pilot testing with a select number of high schools
- Release and promote web-based units for national use
- Follow-up and evaluation

Surveyed User-Groups

- Students (n=30 pre and post)
 - Kansas FFA Floriculture CDE
 - Additional Career Development Activity
 - Toured hydroponic systems at KSU greenhouse
- Educators (n=75)
 - Agriculture Teachers (n=62)
 - Kansas Association of Agricultural Educators Winter Conference
 - Pre-existing interest in horticulture, tasked with teaching agriculture/horticulture concepts
 - Science Teachers (n=13)
 - Kansas Association of Teachers of Science (KATS) Kamp
 - Presented workshop on Hydroponics and Light Quality
 - Not specifically interested in horticulture
 - Queried barriers and incentives to adoption of learning units

FFA High School Youth

Statement (n=30)	Pre-Survey Mean ¹	Post-Survey Mean	Significant Change ²
Interested in career in horticulture	3.47 ±0.94	3.87 ±1.01	**
Understand skills in mathematics required	3.73 ±1.05	4.17 ±0.91	**
Interest in learning mathematics	3.80 ±1.19	3.83 ±1.12	NS
Understand skills in engineering required	3.37 ±0.96	4.37 ±0.72	***
Interest in learning engineering	3.20 ±1.13	3.53 ±1.04	NS
Understand skills in technology required	3.77 ±1.07	4.33 ±0.80	***
Interest in learning technology	3.56 ±1.14	3.60 ±1.10	NS

 $^{^{1}}$ 1=Strongly disagreed, 6=Strongly agreed. 2 NS = Not significant; ** P< 0. 01; *** P< 0. 0001

Teachers' Interests

Statement	Response Mean¹	Response Mean		
Currently teach	about careers in horticulture	content related to cutting-edge tech. in horticulture		
Ag Teachers (n=63)	5.03 ±1.13	3.90 ±1.14		
Science Teachers (n=12)	3.10 ±1.29	2.70 ±1.49		
Instructional activities most likely to use	Hands-on Activities	Video Clips	Demonstrations/ Experiments	Complete Unit of Online Instruction
Ag Teachers	5.67 ±0.54	5.31 ±0.84	5.25 ±0.97	4.79 ±1.16
Science Teachers	5.82 ±0.40	5.64 ±0.50	4.91 ±0.70	4.09 ±1.35

¹1=Strongly disagreed, 6=Strongly agreed.

 All teachers "somewhat to strongly agreed" that they'd be interested in teaching about the use of drones, artificial intelligence, and robots

Teacher Comfort Levels

Statement	Agriculture Teachers Response Mean ¹ (n=63)	Science Teachers Response Mean (n=12)
Familiar with greenhouse operations	4.52 ±1.25	3.83 ±1.47
Confident about building a hydroponic system	4.15 ±1.22	4.33 ±1.56
Confident about teaching students how to manage nutrient solutions in hydroponic systems	3.87 ±1.18	3.82 ±1.66
Know a few different ways in which color of light affects plant growth	4.00 ±1.08	4.67 ±1.30
Would like to incorporate the use of LED lights into instruction	4.48 ±0.98	5.17 ±1.03
¹ 1=Strongly disagreed, 6=Strongly agreed.		

Science Teacher Motivators

Statement (n=12)	Science and Technology in Horticulture ¹	Hydroponic Food Production	Light Quality and Plant Responses
The proposed instructional unit would be innovative and novel	5.18 ±0.60	5.27 ±0.65	5.50 ±0.52
Easy to adopt	4.40 ±1.51	4.36 ±1.50	4.92 ±1.16
Fit well with the Next Generation Science Standards	5.18 ±0.98	5.36 ±0.67	5.50 ±0.52
Relevant to students' everyday lives	5.55 ±0.52	5.36 ±0.67	5.42 ±0.51

¹ 1=Strongly disagreed, 6=Strongly agreed.

• Science teachers somewhat agreed (4.52 ± 1.25) that they were familiar with careers in horticulture in which the knowledge of STEM concepts is critical

Science Teacher Barriers

- Workshop presentation appeared to increase teachers' perception of barriers as to whether or not they could adopt this content (pre: 3.88±0.22 and post: 4.63±0.16; NS)
- Barriers participants listed on surveys include:
 - Space
 - Money
 - Teachers' time
 - Time needed to get results with plants
 - Equipment
 - Natural light

Conclusion

- Science and agriculture teachers have different:
 - Content knowledge bases
 - Motivators to adopt instructional units
 - Barriers to instructional unit adoption
- Team needs to consider:
 - How youths' desires to learn technology, math and engineering mesh or don't mesh with instructional units' content
 - Differences and similarities among teachers
 - How to thoughtfully and strategically address science teacher barriers to adoption
- Two especially important takeaways:
 - Moving from module or unit design to resources that support standards for science and agriculture teachers
 - Need solid strategy to reduce barriers for science teachers

