Math Placement Exam Outcome Impacts on Quantitative Coursework in Agribusiness and Economics

John Michael Riley
Oklahoma State University
Department of Agricultural Economics
North American College Teachers of Agriculture
2019 Annual Meeting
Twin Falls, ID || June 20, 2019

Background

- AGEC 3213 Quantitative Methods in Agricultural Economics
- Junior-level course
- 2-hour lecture period + Computer lab (Excel/Spreadsheet)
- Heavily involves calculus \& statistics - applications related to ag

Background

- Oklahoma State instituted a 'math placement' exam in fall 2012
- ALEKS: $\underline{\text { Assessment }}$ and LEarning in Knowledge Spaces
- Required to enroll in ANY math course (not required of AGEC 3213, but math courses are "pre-requisites")

Anecdotally

- When teaching the course, experienced struggles with the advanced math/stats concepts (ag applications helped)
- These were necessary skills for Agbusiness \& Ag Econ students

ALEKS Math Placement

LOGIN ABOUTUS NEWS CAREERS CONTACTUS SUPPORT FEEDBACK
WHAT IS ALBKS? COURSB PRODUCTS HIGHBR BDUCATION K-12 INDEPENDENT USE \& HOMBSCHOOL

WHAT IS ATEEKS?

OVERVIEW OF ALEKS

COURSE PRODUCTS

ALEKS TOURS

RESEARCH BEHIND ALEKS

SUCCESS STORIES

Assessment and LEarning in Knowledge Spaces is a Web-based, artificially intelligent assessment and learning system. ALEKS uses adaptive questioning to quickly and accurately determine exactly what a student knows and doesn't know in a course. ALEKS then instructs the student on the topics she is most ready to learn. As a student works through a course, ALEKS periodically reassesses the student to ensure that topics learned are also retained. ALEKS courses are very complete in their topic coverage and ALEKS avoids multiple-choice questions. A student who shows a high level of mastery of an ALEKS course will be successful in the actual course she is taking.

ALEKS also provides the advantages of one-on-one instruction, 24/7, from virtually any Web-based computer for a fraction of the cost of a human tutor.

Student Success

- Success in gateway courses, specifically math courses, results in higher retention and graduation rates
- Of successful graduates, 70% were successful in math courses early in their college path, based on both two- and four-year college students ~ Adelman (2005) ~
- Success in a first-year math course as the second-best indicator of retention ~ Herzog (2005) ~
- Withdrawing from a course reduces the likelihood that college students will remain in school and graduate ~ Adelman (2005) ~

Objectives

- Does early success in math coursework - and/or ALEKS exam - provide an indicator of success in AGEC 3213?

Reasoning:

- Are students provided early indication of math deficiencies to either (1) get improved training prior to AGEC 3213 or (2) select a different degree path that better aligns with math skills - earlier rather than later

Methods

- Employ regression techniques on AGEC 3213 student data, controlling for factors not related to math success (instructor/semester, degree path) and math/ALEKS success.

AGEC3213 $_{i}=a+\beta_{1}$ Semester $_{i}+\beta_{2}$ Major $_{i}+\beta_{3}$ ALEKS $_{i}+$ error $_{i}$
AGEC3213 = Grade (\%); Semester = categorical variable representing when course was taken; Major = categorical variable representing if student is AGBU/AGEC student; ALEKS = grade on overall placement exam.
\rightarrow Given that LHS (dependent) variable is bound between 0 and 1, Probit regression model was used

Data

- Data were collected from OSU for individual ALEKS outcomes
- Matched to AGEC 3213 students via OSU identification number
- Students without reported ALEKS score were removed

Coefficients:

	Estimate	Std. Err.	t-value	$\underline{\operatorname{Pr}(>\|t\|)}$
(Intercept)	0.605096	0.306060	1.977	0.05009
F2012	1.022663	0.583345	1.753	0.08187
S2013	0.030922	0.472024	0.066	0.94787
F2013	-0.074077	0.229678	-0.323	0.74756
S2014	0.575811	0.241450	2.385	0.01849 **
F2014	0.449036	0.178864	2.510	$0.01325 * *$
F2015	0.689290	0.221725	3.109	0.00230 ***
S2016	0.368121	0.177551	2.073	$0.04006^{* *}$
F2016	0.978571	0.220722	4.433	1.91e-05 ***
S2017	0.362024	0.329255	1.100	0.27351
AGBU	0.148256	0.179141	0.828	0.40937
AGEC	0.362402	0.236636	1.531	0.12801
AGCM	0.546458	0.316089	1.729	0.08615
ANSI	0.077081	0.225190	0.342	0.73267
PASS	0.195842	0.781273	0.251	0.80245
ALEKS	0.010006	0.003618	2.765	$0.00649 * * *$

Marginal Effects

Marginal Effects:

	$\underline{\mathrm{dF} / \mathrm{dx}}$	Std.Err. F2012	0.0890344	0.1351191
S2013	0.0038144	0.2377977	0.6589	$0.5\|z\|$
F2013	-0.0094508	0.1237288	-0.0764	0.9872
S2014	0.0603867	0.0862582	0.7001	0.9391
F2014	0.0505818	0.0746065	0.6780	0.4939
F2015	0.0713529	0.0769495	0.9273	0.3538
S2016	0.0420760	0.0763938	0.5508	0.5818
F2016	0.0948113	0.0658084	1.4407	0.1497
S2017	0.0399852	0.1317378	0.3035	0.7615
AGBU	0.0185147	0.0924625	0.2002	0.8413
AGEC	0.0410380	0.0997758	0.4113	0.6809
AGCM	0.0571823	0.1122197	0.5096	0.6104
ANSI	0.0094163	0.1112249	0.0847	0.9325
PASS	0.0227882	0.3491311	0.0653	0.9480
ALEKS	0.0012475	0.0018515	0.6738	0.5004

Boxplot of AGEC 3213 Grade (\%) \& ALEKS Score

Thank You \& Questions

John Michael Riley
(405) 744-6163
john.m.riley@okstate.edu

