

Integrative Use of an Incubator Farm Class Project to Enhance Student Engagement

Xin Zhao¹, Derek Farnsworth², Jacqueline Ricotta³, and Grady Roberts⁴

¹Horticultural Sciences Dept., ²Food and Resource Economics Dept., Univ. of Florida

³Plant Science Dept., Delaware Valley Univ.

⁴Agricultural Education and Communication Dept, Univ. of Florida

Hands-on learning at university teaching gardens and farms

- Instructional garden at Univ. of Wisconsin-Madison (Stimart, 1999)
- Horticulture teaching garden at Oregon State Univ. (VanDerZanden and Cook, 1999)
- Year-round student organic farm at Michigan State Univ. (Biernbaum et al., 2006)
- A survey of 80 college and university student farms (Leis et al., 2011)
 - ✓ Diverse operating characteristics
 - Greatest impact on undergraduate students
 - Student recruitment tool

Horticultural Sciences Department vegetable teaching garden at University of Florida

- Group-based project-based hands-on learning in HOS3281C - Principles of organic and sustainable crop production
- Research and demonstration projects
- Students' feedback: integrating agribusiness management into class group projects

Fall 2018: Incubator farm class project

- Concepts of marketing, business planning, and budgeting integrated into lectures and a writing assignment
- Groups of 5-6 students assuming the role of a beginning farmer
 - ✓ Select and grow fall vegetable crops to start and operate an incubator organic farm (30 ft × 22 ft)
 - ✓ Identify and address S.M.A.R.T. holistic farming management goals
 - ✓ Use an online blog to document farming progress
 - ✓ Farm tours at the end of the semester.
 - ✓ Produce a 2-page pamphlet and a 5-minute video

Branding and team development

Storming

Norming

Performing

Fall 2018: Incubator farm class project

- Concepts of marketing, business planning, and budgeting integrated into lectures and a writing assignment
- Groups of 5-6 students assuming the role of a beginning farmer
 - ✓ Select and grow fall vegetable crops to start and operate an incubator organic farm (30 ft × 22 ft)
 - ✓ Identify and address S.M.A.R.T. holistic farming management goals
 - ✓ Use an online blog to document farming progress
 - ✓ Farm tours at the end of the semester.
 - ✓ Produce a 2-page pamphlet and a 5-minute video

Students' perception of learning

- Post-then-pre assessment at the end of the course
- 44 students completed the assessment to report their perceived levels of knowledge, skill set, and interest before and after conducting the project
- 27 questions: 18 related to knowledge, understanding, and application; 9 related to skill and interest development
- 5-point scale: 1 = low, 5 = high

Questions related to knowledge / understanding / application

- 1. Overall knowledge of vegetable farming operations
- 2. Growing vegetable crops
- 3. Growing vegetable crops organically
- 4. Setting S.M.A.R.T. goals to start a vegetable farming operation
- 5. Holistic management planning of a vegetable farming operation
- 6. Conducting holistic management of a vegetable farming operation
- 7. Creating a business plan for a vegetable farming operation
- 8. Developing marketing strategy for a vegetable farming operation
- 9. Enterprise budgeting and record keeping for a vegetable farming operation

Questions related to knowledge / understanding / application

- 10. Using intercropping systems for organic vegetable production
- 11. Using cover crops for organic vegetable production
- 12. Using composts for organic vegetable production
- 13. Fertilization and nutrient management for organic vegetable production
- 14. Using integrated management practices for organic vegetable production
- 15. Appreciation of environmental sustainability of farming operations
- 16. Appreciation of economic viability of farming operations
- 17. Appreciation of social community sustainability of farming operations
- 18. Appreciation of long-term sustainability of farming operations

Questions related to skill / interest development

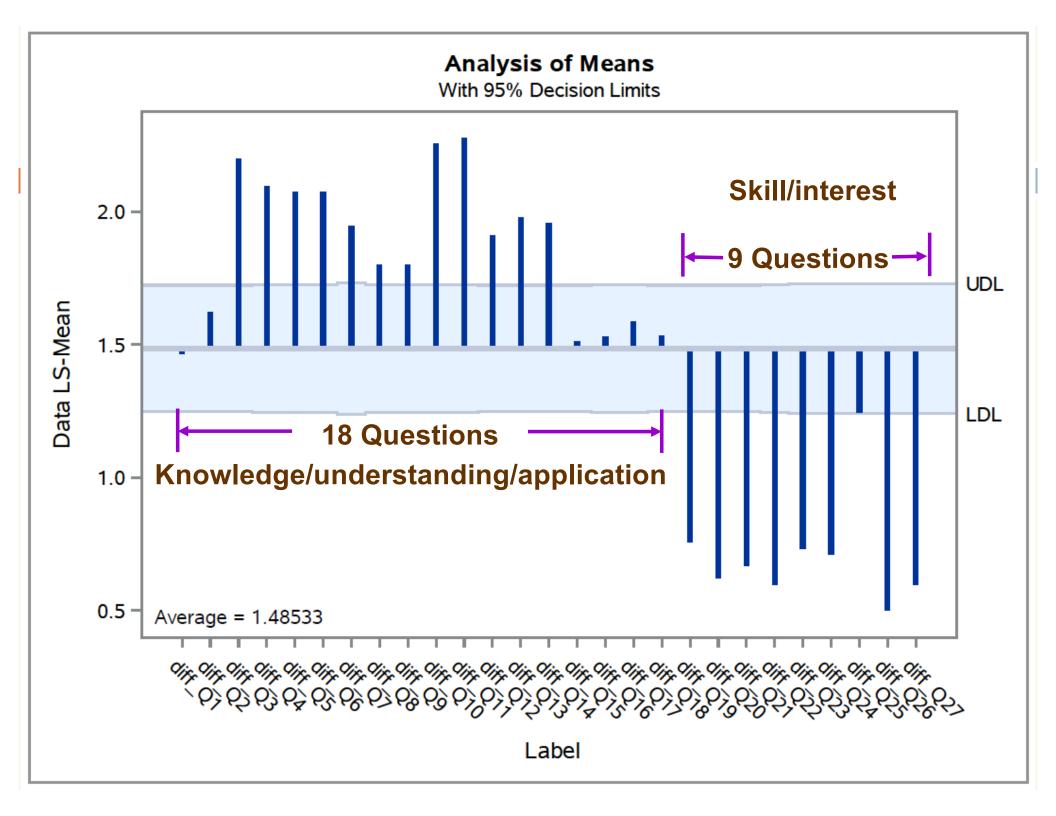
- 1. Teamwork skill development
- 2. Leadership skill development
- 3. Oral communication skill development
- 4. Written communication skill development
- 5. Problem solving skill development
- 6. Interest and motivation in active learning
- 7. Interest and motivation in conducting organic farming research
- 8. Interest and motivation in pursuing a career directly related to farming operations in general
- 9. Interest and motivation in pursuing a career directly related to organic production

Data analysis

- Glimmix procedure in SAS 9.4
- Paired t-test to compare the pre and post scores for each question
- ANOM (analysis of means) to determine whether the pre and post score difference for each question differs from the overall mean of the pre and post score difference

Results: Questions related to knowledge / understanding / application

 Analysis of students' responses indicated significant knowledge gain in ALL assessed areas (P < 0.001)


Q	Pre	Post	Diff	Q
1	2.66	4.16	1.50	10
2	2.48	4.14	1.66	11
3	1.82	4.07	2.25	12
4	1.88	4.02	2.14	13
5	1.98	4.09	2.11	14
6	2.00	4.12	2.12	15
7	1.86	3.88	2.02	16
8	1.93	3.77	1.84	17
9	1.84	3.67	1.83	18

Q	Pre	Post	Diff
10	2.14	4.44	2.30
11	2.12	4.44	2.32
12	2.32	4.27	1.95
13	2.00	4.02	2.02
14	2.20	4.20	2.00
15	3.11	4.66	1.55
16	2.75	4.28	1.53
17	2.77	4.40	1.63
18	3.02	4.59	1.57

Results: Questions related to skill / interest development

 Analysis of students' responses indicated significant increases in ALL assessed areas (P < 0.001)

Q	Pre	Post	Diff
1	3.68	4.45	0.77
2	3.70	4.34	0.64
3	3.66	4.34	0.68
4	3.80	4.42	0.62
5	3.76	4.51	0.75
6	3.86	4.60	0.74
7	2.86	4.12	1.26
8	3.37	3.88	0.51
9	2.93	3.52	0.59

(Post – Pre) scores greater than overall mean of difference

- Growing vegetable crops organically
- Setting S.M.A.R.T. goals to start a vegetable farming operation
- Holistic management planning of a vegetable farming operation
- Conducting holistic management of a vegetable farming operation
- Creating a business plan for a vegetable farming operation
- Developing marketing strategy for a vegetable farming operation
- Enterprise budgeting and record keeping for a vegetable farming operation

(Post – Pre) scores greater than overall mean of difference

- Using intercropping systems for organic vegetable production
- Using cover crops for organic vegetable production
- Using composts for organic vegetable production
- Fertilization and nutrient management for organic vegetable production
- Using integrated management practices for organic vegetable production

(Post – Pre) scores similar to overall mean of difference

- Overall knowledge of vegetable farming operations
- Growing vegetable crops
- Appreciation of environmental sustainability of farming operations
- Appreciation of economic viability of farming operations
- Appreciation of social community sustainability of farming operations
- Appreciation of long-term sustainability of farming operations
- Interest and motivation in conducting organic farming research

(Post – Pre) scores lower than overall mean of difference

- Teamwork skill development
- Leadership skill development
- Oral communication skill development
- Written communication skill development
- Problem solving skill development
- Interest and motivation in active learning
- Interest and motivation in pursuing a career directly related to farming operations in general
- Interest and motivation in pursuing a career directly related to organic production

Take-home messages

- The Incubator Farm class project had significantly positive impacts on student learning and engagement
- Overall, greater influence on knowledge gain and application vs. skill and interest development
- Positive impact on teamwork and problem-solving skills, interest and motivation in active learning, and motivation in conducting organic farming research stood out regarding skill and interest development
- The Dream Farm class project with more focus on skill development in the advanced organic and sustainable crop production course in the following spring semester
- Improving the class project design and assessment tools

Acknowledgements

Association of Public Land-Grant Universities Innovative Teaching Award

UF College of Agricultural and Life Sciences

UF Horticultural Sciences Teaching Garden

James Colee, UF IFAS Statistical Consulting Unit

THANK YOU!

