Student Conceptions of the Nature of Science Implications for Agricultural Education

Hannah Scherer, Agricultural and Extension Education

Courtney Vengrin, Agricultural and Extension Education

Aaron Bond, Institute for Distance and Distributed Learning

This work was funded by an IDDL Distance Learning Research Fellowship

Science is an exciting, complex, and human endeavor.

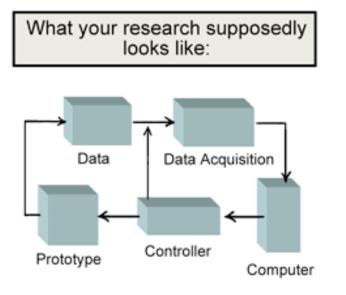


Figure 1. Experimental Diagram

Figure 2. Experimental Mess

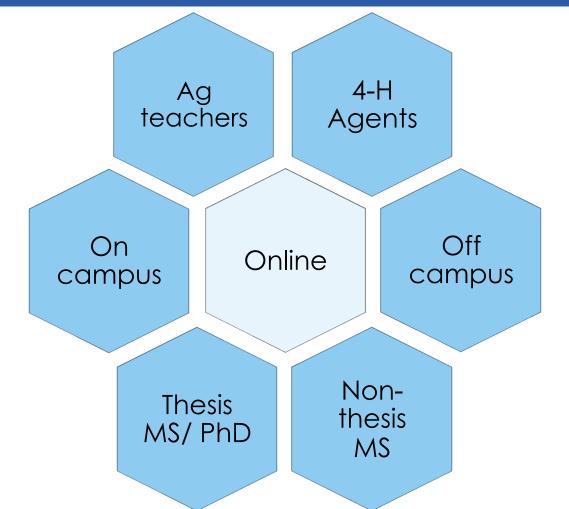
http://www.phdcomics.com/comics/archive.php?comicid=961

Key points of this talk

- The nature of science is relevant to agriscience and teacher preparation courses
- Direct instruction paired with experience and reflection can improve student understanding of the nature of science
- Agriscience instructors should address the nature of science along with content in their courses

Ideas about the nature of science are **always** conveyed in science teaching (McComas et al., 1998)

1.	Ask a question.
2.	Formulate a hypothesis.
з.	Perform experiment
4.	Collect data.
5.	Draw conclusions.
Bal	e until thoroughly cooked.
Gai	mish with additional observations.


Image credit: http://www.examiner.com/article/us-lacksscience-graduates-new-web-site-hopes-to-help Image credit: http://undsci.berkeley.edu/article/0_0_0/ howscienceworks_01

Science is a way of knowing

- distinction between observation and inference
- meaning and role of scientific theories and laws
- role of imagination and creativity in generating scientific knowledge
- observations are guided by theoretical perspectives
- scientific knowledge is socially and culturally embedded
- there is not one "scientific method" that will lead to absolute knowledge
- scientific knowledge is tentative yet durable

(Lederman, 2007)

Instructional context lends itself to a diverse group of graduate students

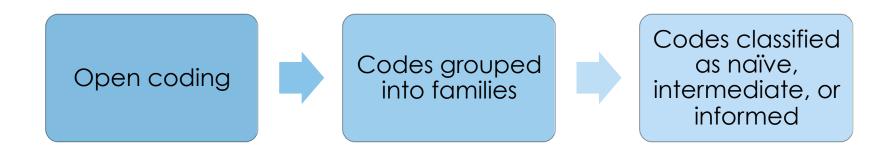
STEM Integration in Agricultural Education

Research-based design strategies were used in course planning

Direct instruction (McComas et al., 1998)

- Readings
- Application assignments

Engage in scientific inquiry (Schwartz et al., 2004)


Agriscience project

Reflection (Abd-El-Khalick, 2001)

- Discussion forum
- Reflection assignments

Student ideas about the nature of science were investigated

- Pre- and post- test based on Views of the Nature of Science, Form C (Abd-El-Khalick, 2001)
- Intrinsic case study (Berg, 1998)
- Qualitative analysis of open-ended responses

Student ideas about the nature of science were investigated

- distinction between observation and inference
- meaning and role of scientific theories and laws
- role of imagination and creativity in generating scientific knowledge
- observations are guided by theoretical perspectives
- scientific knowledge is socially and culturally embedded
- there is not one "scientific method" that will lead to absolute knowledge
- scientific knowledge is tentative yet durable

Student ideas about the nature of science were investigated

- distinction between observation and inference
- meaning and role of scientific theories and laws
- role of imagination and creativity in generating scientific knowledge
- observations are guided by theoretical perspectives
- scientific knowledge is socially and culturally embedded
- there is not one "scientific method" that will lead to absolute knowledge
- scientific knowledge is tentative yet durable

Aspects of nature of science received different attention

Methods of scientific inquiry

- Reading assignment
- Reflection in discussion forum
- Application assignment observation

Creativity and imagination

 Personal reflection following individual agriscience research project

More informed views about the methods of scientific inquiry

Does the generation of scientific knowledge require experiments?

	Pretest	Posttest	Change
Student C	tudent C Naïve		More informed
Student E Naïve		Intermediate	More informed
Student F	Naïve	Informed	More informed
Student G	Naïve	Naïve	No change
Student H	Naïve	Informed	More informed
Student J	Naïve	Informed	More informed
Student K	Naïve	Naïve	No change
Student L	Naïve	Intermediate	More informed
Student M	Intermediate	Informed	More informed

More informed views about the methods of scientific inquiry

Student H: naïve to informed

To develop scientific knowledge **one would need to conduct experiments**. (Pretest, 2:53)

Experiments are not always required to develop scientific knowledge. There are some opportunities which can allow observations to be used...(Posttest, 3:35)

More informed views about the methods of scientific inquiry

Student L: naïve to intermediate

I think that **the development of scientific knowledge requires experiments** or else the information would be a theory (an unverified, non-repeatable answer to a question).. (Pretest, 2:50)

Science in general should consist of **information that is obtained in a repeatable/reliable way. That is what makes it scientific and not just a hunch.** We would not want to hear that the best way to plant a crop is to hand plant each seed individually 6 inches apart without first testing out other methods of planting or other distances of planting to determine the best growth and harvest. (Posttest, 3:30)

Increased appreciation for the role of creativity and imagination in science

Do scientists use creativity and imagination?

	Pretest	Posttest	Change
Student C	Intermediate	Informed	More informed
Student E	Naïve	Intermediate	More informed
Student F	Intermediate	Intermediate	No change
Student G	Intermediate	Intermediate	Slightly more informed
Student H	Naïve	Intermediate	More informed
Student J	Intermediate	Informed	More informed
Student K	Intermediate	-	_
Student L	Naïve	Intermediate	More informed
Student M	Intermediate	Intermediate	No change

Increased appreciation for the role of creativity and imagination in science

Student H: naïve to intermediate

I feel experiments are more based on **black and white factual knowledge** so there is little room for creativity (Pretest, 2:147)

The study of science is a creative effort and various scientists are likely not to think the same about certain hypothesis. This just shows how using the same data, scientists can reach totally different conclusions (Posttest, 3:79)

I think the imagination and creativity is used **during the planning and design** (Posttest, 3:96)

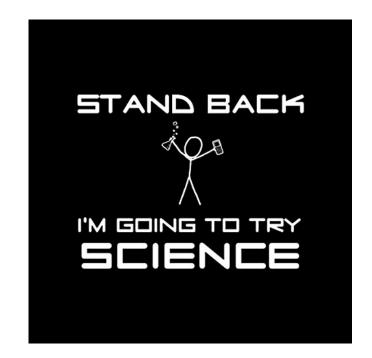
Increased appreciation for the role of creativity and imagination in science

Student C: Intermediate to Informed

The **planning and design stages** use the most imagination and creativity. (Pretest, 2:137)

Science can be interpreted in many different ways and it is up to the person to use the evidence that they have to interpret what is taking place and happening. (Posttest, 3:76)

They use creativity and imagination in coming up with the experiment and how to test for what they are trying to find. **They then use creativity to expand on the data they collect**. (Posttest, 3:93)


Students views of the nature of science changed

- Most students involved in the study started out with a naïve view of some aspects
- All students involved in the study developed a more informed view of some aspects
- Aspects that were explicitly addressed showed greater change than those that were not
- Varied change in other aspects

Recommendations for practice

What do we know **and how do we know it**? (Matthews, 1994)

- Agriscience instructors at all levels should consider how they are presenting the field
- Teacher educators should address the nature of science explicitly in methods courses

