BIO-FUELS UNIT OPERATIONS COURSE DEVELOPMENT

IOWA STATE UNIVERSITY


Outline

- > Needs
- Objective
- Curriculum development
 - > Class room
 - Laboratories
- Deliverables

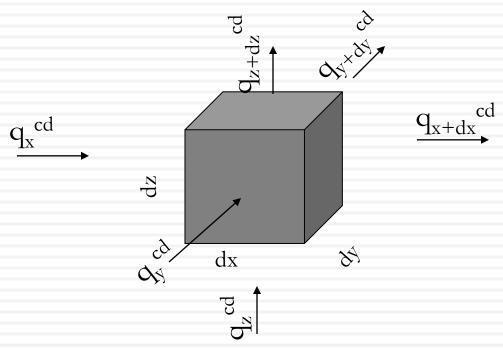
Need

- Ethanol plants
 - 189 in operation
 - 16 planned/construction
 - 10.75 billion gallons of ethanol fuel in 2009
- Biodiesel plants
 - 144 plants in operation
 - 51 plants idle +9 plants under construction
 - 2.69 billions gallons/year
- 163,000 workers are in jobs related to the biofuels industry
- Cellulosic /advanced biofuel plants

Need

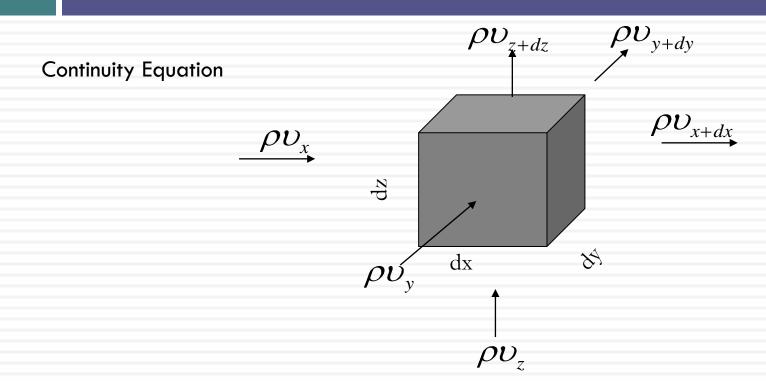
- The complexity and interactions within systems such as biorefineries are difficult to demonstrate, much less simulate in a traditional classroom
- The innovation of the "the development of new teaching strategies based in virtual reality technology" which will give students hands-on experience and knowledge not otherwise available
- Virtual reality simulation software package that "looks and feels" like a real biofuel facility

Deliverables/impacts


- The deliverables of this project include:
 - A simulation software package for biorefineries.
 - A course package that can be used either in the classroom or a Web-based environment.
 - A training course and package for those teaching this course in the future.
- □ The <u>outcomes/impacts</u> will include:
 - Improved student readiness for jobs in the biofuels industry.
 - Accelerated biofuel facility operator independence.
 - Improved optimization of biofuel production.

Course outline

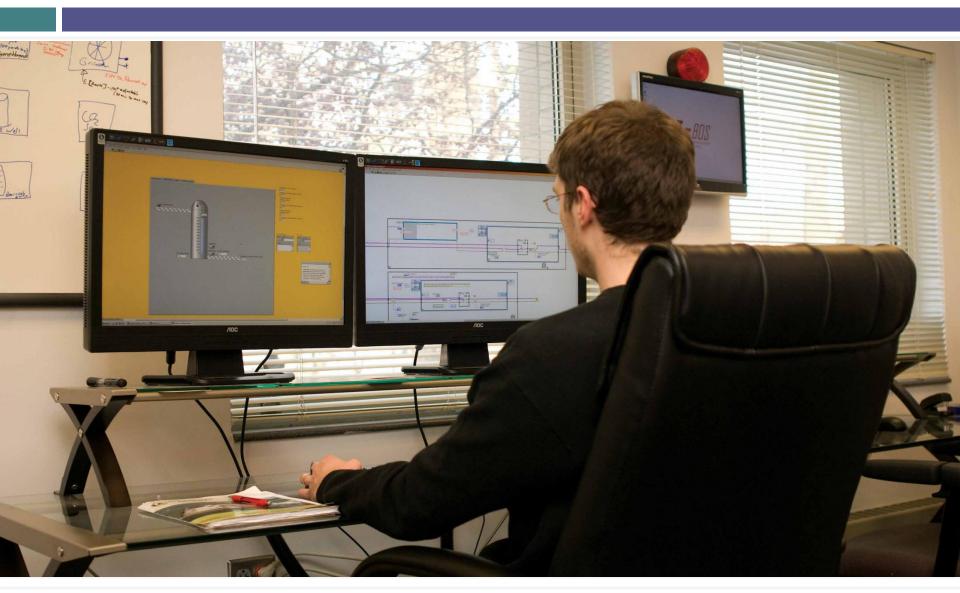
Biorenewable Resources and Technology program designed to teach biofuel plant operations


Week	Topics	Laboratory Exercise		
1	Review of conversion of biomass to fuels	Lab safety/simulator introduction		
2	Biofuels, ecology, biomass, environmental	Enzymatic reaction kinetics,		
	issues	fermentations, esterfication,		
		distillation		
3	Heat transfer (Convection and conduction)	Plant tour/dry grinding		
4	Mass transfer (Newtonian and Non-	Biofuel characterization		
	Newtonian)			
5	Biofuel plant operation 1 (start up)	Group simulation exercises		
6	Biofuel plant operation 2 (optimization)	Simulation exercises		
7	Biofuel plant operation 2 (crash recovery)	Simulation exercises		
8	Coupled heat and mass transfer	Simulation exercises		
9	Unit operations 1	Simulation exercises		
10	Unit operations 2	Simulation exercises		
11	Unit operations 3	Simulation exercises		
12	Energy balance	Simulation exercises		
13	Biofuel plant design and staff, location and	Simulation exercises		
	requirements, safety			
14	Regulations 1	Simulation exercises		
15	Regulations 2 and public relations	Quality Management Systems		

Lecture Slide

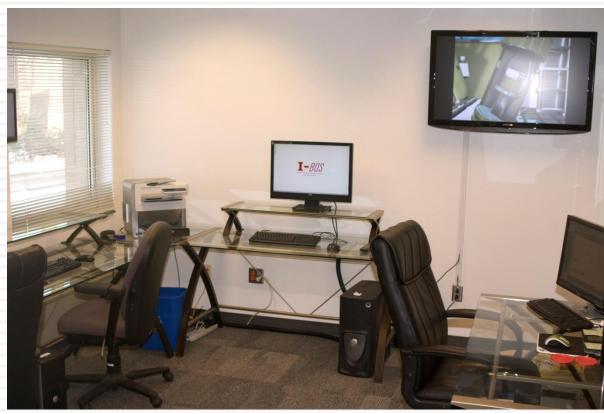
$$\begin{aligned} q_x^{\ cd}(dzdy) - q_{x+dx}^{\ cd}(dzdy) \\ + q_z^{\ cd}(dxdy) - q_{z+dz}^{\ cd}(dxdy) + q_y^{\ cd}(dxdz) - q_{y+dy}^{\ cd}(dxdz) \end{aligned} = & \rho C d\theta / dt (dxdydz) \\ + Q(dxdydz) \end{aligned}$$

Lecture Slide


$$\frac{dxdydz}{dt} = dydz\upsilon_{x}\rho - dydz\upsilon_{x+dx}\rho + dxdz\upsilon_{y}\rho - dxdz\upsilon_{y+dy}\rho + dxdy\upsilon_{z}\rho - dxdy\upsilon_{z+dz}\rho$$

$$\frac{d\rho}{dt} + \frac{\partial}{\partial x}(\rho\upsilon_{x}) + \frac{\partial}{\partial y}(\rho\upsilon_{y}) + \frac{\partial}{\partial z}(\rho\upsilon_{z}) = 0$$

Simulator


- Labview environment
- □ Two packages
 - Corn to ethanol
 - Plant oil OR animal fat to biodiesel
- □ Two operators
- □ Three computers
 - Two simulators
 - One master (video and I/O)
- Text message enabled
- 42" flat panel security loop
- □ Alarms

I-BOS room

I-BOS room (Interactive Biorefinery Operations Simulation (I-Bos))

Simulator algorithms

- Mass and energy balance
- □ 1 kg elements
 - Composition
 - Energy
- Outcomes and measurables
 - Biofuel production
 - Energy
 - Efficiency
 - Recovery

Biomass, X

Fermentation Transfer Functions

$$\frac{dX}{dt} = -F(X) + \left[\frac{(\mu_{max})(S)}{K_s + S}\right] \left(1 - \frac{P}{P^*}\right)^n(X)$$

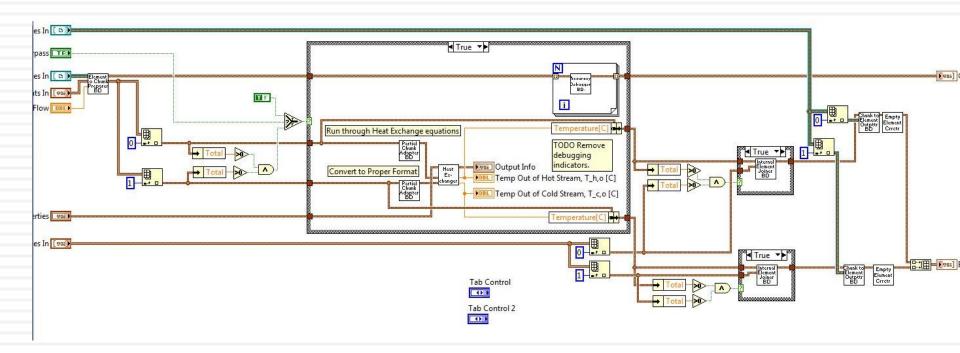
Glucose, S

$$\begin{split} \frac{dS}{dt} &= F(S_f) - \frac{1}{Y_{\frac{X}{S}}} \left[\frac{(\mu_{max})(S)}{K_s + S} \right] \left(1 - \frac{P}{P^*} \right)^n (X) \\ &+ \frac{1}{Y_{\frac{S}{DP_4}}} \left[\frac{(R_{DP_4})(DP_4)}{K_{DP_4} + DP_4} \right] + \frac{1}{Y_{\frac{S}{DP_3}}} \left[\frac{(R_{DP_3})(DP_3)}{K_{DP_3} + DP_3} \right] \\ &+ \frac{1}{Y_{\frac{S}{DP_2}}} \left[\frac{(R_{DP_2})(DP_2)}{K_{DP_2} + DP_2} \right] \end{split}$$

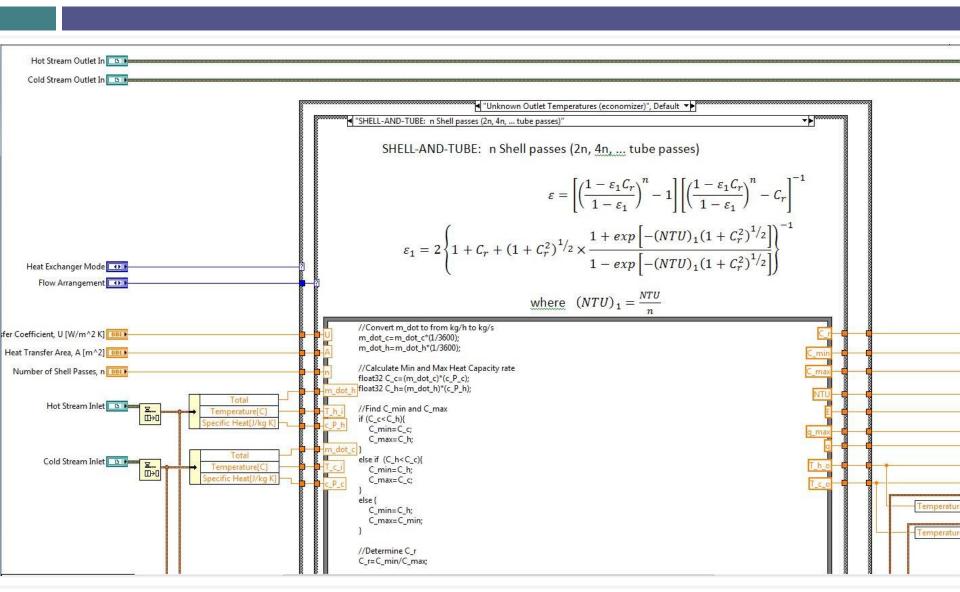
Ethanol, P

$$\frac{dP}{dt} = -F(P) + Y_{\frac{P}{X}} \left[\frac{(\mu_{max})(S)}{K_s + S} \right] \left(1 - \frac{P}{P^*} \right)^n (X)$$

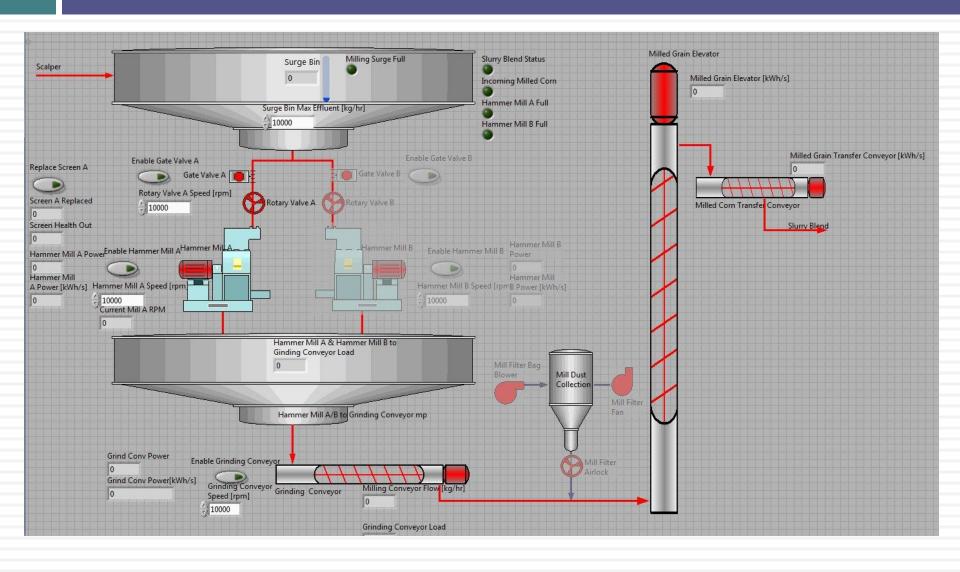
Starch Intermediates, DP₄

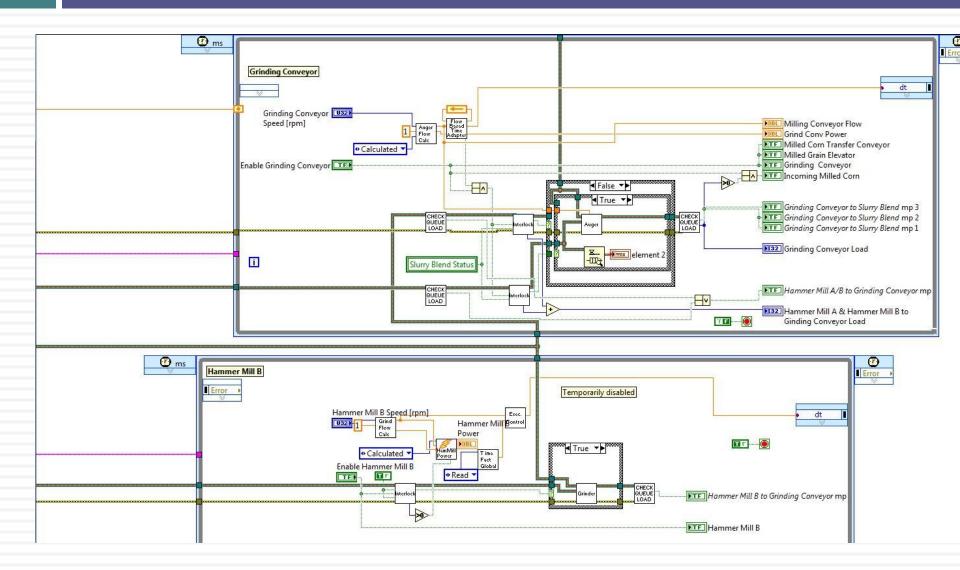

$$\frac{dDP_4}{dt} = F (DP_4)_f - \frac{1}{Y_{\frac{S}{DP_4}}} \left[\frac{(R_{DP_4})(DP_4)}{K_{DP_4} + DP_4} \right]$$

Model	Description	Units	
Х	Biomass	Concentration	
F	Feed rate	1/time	
μ_{max}	Maximum specific growth rate	1/time	
S	Substrate (glucose)	Concentration	
K _s	Monod coefficient	Concentration	
Р	Product (ethanol)	Concentration	
P*	Maximum product (ethanol)	Concentration	
n	Exponent	unitless	
S _f	Substrate (glucose)	Concentration	
	concentration in the feed		
$(DP_4)_f$	DP ₄ concentration in the feed	Concentration	
Y _{X/S}	Yield ratio of biomass to	Concentration/	
	glucose	concentration	
Y _{S/DP4}	Yield ratio of glucose to DP ₄	Concentration/	
		concentration	
Y _{P/X}	Yield ratio of ethanol to	Concentration/	
	biomass	concentration	
R _{DP4}	Reaction rates of DP4	Concentration/	
		time	
K _{DP4}	Michaelis Menten Constants of	Concentration	
	DP4		


Fermentation Transfer Functions

	ivioaei	Description	Units
Starch Intermediates, DP3, DP2		Feed rate	1/time
		Maximum specific growth	1/time
$\begin{split} \frac{dDP_3}{dt} &= F (DP_3)_f - \frac{1}{Y_{\underline{S}}} \left[\frac{(R_{DP_3})(DP_3)}{K_{DP_3} + DP_3} \right] \\ \frac{dDP_2}{dt} &= F (DP_2)_f - \frac{1^{DP_3}}{Y_{\underline{S}}} \left[\frac{(R_{DP_2})(DP_2)}{K_{DP_2} + DP_2} \right] \end{split}$		rate	
		Substrate (glucose)	Concentration
		Monod coefficient	Concentration
		DP ₃ concentration in the	Concentration
		feed	
		DP ₂ concentration in the	Concentration
Lactic Acid, LA		feed	
		Yield ratio of glucose to DP ₃	Concentration/concentration
a(14) ()(c)		Yield ratio of glucose to DP ₂	Concentration/concentration
$\frac{d(LA)}{dt} = -F(LA) + Y_{LA} \left \frac{(\mu_{max})(S)}{K_s + S} \right $	Y _{LA/X}	Yield ratio of lactic acid to	Concentration/concentration
$dt \qquad \frac{2\pi}{X} \left[K_s + S \right]$		biomass	
		Yield ratio of acetic acid to	Concentration/concentration
Acetic Acid, AA		biomass	
$\frac{d(AA)}{dt} = -F(AA) + Y_{\frac{AA}{X}} \left[\frac{(\mu_{max})(S)}{K_s + S} \right]$		Yield ratio of glycerol to	Concentration/concentration
		biomass	
		Reaction rates of DP3	Concentration/time
		Reaction rates of DP2	Concentration/time
Glycerol Acid, Gly	K _{DP3}	Michealis Menten Constants	Concentration
$d(Gly)$ $ (\mu_{max})(S) $		of DP3	
$\frac{d(Gly)}{dt} = -F(Gly) + Y_{\frac{Gly}{V}} \left \frac{(\mu_{max})(S)}{K_s + S} \right $	K _{DP2}	Michealis Menten Constants	Concentration
$ut \qquad X [K_s + S]$		of DP2	


Code for fermentation (high level)


Code for fermentation (low level)

Code for milling (front panel)

Code for milling (front panel)

Status

- > Ethanol is 90% complete
- Biodiesel is 80% complete
- > Need to validate software
- > 1st class planned spring 2011
- > Online summer of 2011

Questions/Discussions

- > Thanks
- USDA Higher Education Challenge Grant
- Crown Iron
- > Emerson Electric
- Lincoln Way Energy
- > CCUR
- > Fastek