

Yearlong Involvement with the Curriculum for Agricultural Science Education: A High School Student Perspective

Misty D. Lambert Jonathan J. Velez Kristopher M. Elliott

Introduction

- The Curriculum for Agricultural Science Education (CASE) is a new, rapidly growing curriculum that purports to enhance the academic rigor of agricultural education at the high school level
- Because it is a new program, very little research exists which examines the impact or perceptions of the participants
- This study sought to take a broad look at the perceptions of students engaged in a yearlong Curriculum for Agricultural Science Education curriculum

Need

- A rigorous, science-based high school agriculture curriculum may improve our ability, on the college level, to recruit and retain high achieving agriculture students.
- The Association of Public Land Grant Universities' Science & Mathematics Teacher Imperative calls for an increased emphasis on STEM related middle and high school education.
- The National Research Council 2009 report, Transforming Agricultural Education for a Changing World, recommended an increased focus on K-12 education

Conceptual Framework

Grounded in the Person-object Theory of Interest (POI) (Krapp & Fink, 1992)

• The POI focusses on both cognitive and affective aspects of interest

Study examined 5 constructs:

- · Critical Thinking
- Task Value
- Autonomy
- Science Lab Self-efficacy
- Cognitive Engagement

Purpose

- Identify the demographic characteristics of students enrolled in CASE courses.
- Identify the means of the constructs of interest for the first, second, and third points of assessment during the yearlong CASE experience.

Oregon State

Methods

- Purposive sample of 4 area high schools (Ary, Jacobs, Razavieh, & Sorensen, 2006)
 - One rural, two large suburban, and one large urban school
 - Results are generalizable only to the respondents
- Researchers conducted assessments in yearlong CASE courses
 - Assessed in September, December, and May

Instrumentation

- All Likert-type instruments, scaled from 1 (strongly disagree) to 6 (strongly agree)
- Critical Thinking
 - Motivated Strategies for Learning Questionnaire (MSLQ) (α = .72-.75) (Pintrich, Smith, Garcia, & McKeachie, 1991)
- Task Value
 - MSLQ ($\alpha = .86-.89$)
- Autonomy
 - Learning Climate Questionnaire (LCQ) (α = .88-.90)

- Science Self-efficacy
 - Science Self-efficacy (α = .86-.90)

(Britner, 2000)

• Cognitive Engagement

- Motivated Task statements (α = .89-.91)

Oregon State

(Greene et al., 2004)

Results: Obj. 1

- Total of 353 respondents from four schools
 - Two larger schools with CASE enrollments of 125 and 136
 - Two smaller schools with enrollments of 69 and 23
 - Course enrollments
 - ➤ Introduction to Agriculture, Food, and Natural Resources 87
 - ➤ Principles of Agricultural Science (Animal) 59
 - ➤ Principles of Agricultural Sciences (Plant) 207
 - Demographic data provided by the course instructors

Characteristic	f	%
Sex (n = 315)		
Male	160	45.19
Female	155	43.78
Grade level (n = 315)		
Freshman	70	19.77
Sophomore	70	19.77
Junior	95	26.83
Senior	80	22.59
IEP (n = 315)		
Yes	47	13.27
No	268	75.70
TAG (n =315)		
Yes	15	4.20
No	300	84.72
ELL (n = 315)		
Yes	30	12.70
No	270	76.30
A participant in FFA (n =315)		
Yes	108	30.50
No	207	58.50
Science credit (n = 315)		
Yes	230	65.00
No	85	24.00
College credit (n =315)		
Yes	26	7.30
No	289	81.60

Results: Obj. 3 Spearman's rho correlations between grade level and the constructs of interest (n = 173)Ordinal Variable Interval Variable Value **Grade Level** Χ Autonomy .12^b Χ Task Value -.01a Χ Critical Thinking -.06ª Χ Science Efficacy .02a Χ Cognitive Engagement .02a Note. All correlations and effect sizes are less than r = .20 (<.04). Grade level was coded 1 = Freshman, 2 = Sophomore, 3 = .00Junior, 4 = Senior a = trivial, b = small Oregon State

Results: Obj. 3

Point-biserial correlations between dichotomous nominal and interval variables (n = 173)

				Critical		Cognitive
		Autonomy	Task Value	Thinking	Science Efficacy	Engagement
Gender	r _{pb}	25*	21*	08	15*	22*
	Sig.	.00	.00	.25	.04	.00
IEP	r _{pb}	12	10	04	19*	09
	Sig.	.18	.21	.61	.01	.22
504	r _{pb}	.08	00	04	.00	.07
	Sig.	.30	.96	.63	.98	.35
ELL	r _{pb}	21*	24*	10	19*	26*
	Sig.	.00	.00	.18	.01	.00
TAG	r _{pb}	.15	.12	.15*	.08	.17*
	Sig.	.05	.10	.05	.29	.02
Active in FFA	r _{pb}	.25*	.21*	.15	.24*	.21*
	Sig.	00_	.00	.05	.00	.00
	r _{ob}	.16*	.00	06	.02	.02
	Sig.	.04	.93	.47	.82	.79

Note. All effect size descriptors for statistically significant correlations fall within the small (.10-.30) designation. All dichotomous variables were coded 0 = no, 1 = yes. Gender was coded 0 = females, 1 = males. * Correlation is significant at the 0.05 level (2-tailed).

Conclusions

- No statistically significant mean differences between the three points of assessment
- Context specific
 - Two schools showed slight gains
 - Two schools showed slight decreases
- Students active in FFA perceive themselves to be "engaged" in their CASE curriculum
- Females perceived themselves as higher in all construct areas
- ELL students evidenced lower mean scores in all construct areas

Recommendations

- Further research with controls for some of the extraneous variables
- Experimental design with assessment of academic scores
- Research which examines the perceptions of ELL and IEP students actively involved in a CASE course
- Longitudinal studies which track future enrollment in post-secondary agriculture enrollment

Oregon State

Thank You

Misty Lambert
Assistant Professor
Oregon State University
Misty.Lambert@OregonState.edu