

Agroecology as a tool to improve science capacity in agriculture through participatory research, education, and extension

Alex E. Racelis

University of Texas Rio Grande Valley alexis.racelis@utrgv.edu

AGRICULTURE and FOOD SYSTEMS

Biodiversity loss

"Science capacity in the food, agriculture, natural resources and related sciences is at risk at a time of critical need"

(Association for Public and Land-grant Universities, 2009)

ENATIONAL

REPORT

Transforming Agricultural Education for a Changing World

- Agricultural education not keeping up with the changing nature of agriculture;
 - often isolated from other disciplines
 - Academic institutions often isolated from other sectors and employers;
 - Employers are looking for skills, competences, and abilities not always found in agriculture graduates

ENATIONAL

REPORT

Transforming Agricultural Education for a Changing World

Tor a Changing World

- Changing student demographics
 - disconnect between student body and agriculture
 - Students are not aware of the opportunities in food and agriculture careers;

Follow up to previous National Academies reports on agricultural education

and on undergraduate education

Build capacity through training programs in agroecology:

the application of ecological concepts and principles to the design and management of agricultural systems

- Promotes a systems approach that supports the resilience and ecological, socio-economic and cultural sustainability of farming systems
- a scientific discipline that Acknowledges that agricultural systems are inescapably linked social-ecological systems
- a social movement seeking a new way of considering agriculture and its relationship with society (IIED, 2014)

"Science capacity in the food, agriculture, natural resources and related sciences is at risk at a time of critical need"

(Association for Public and Land-grant Universities, 2009)

Build capacity through training programs in agroecology:

the application of ecological concepts and principles to the design and management of agricultural systems

- Promotes a systems approach that supports the resilience and ecological, socio-economic and cultural sustainability of farming systems
- a scientific discipline that Acknowledges that agricultural systems are inescapably linked social-ecological systems
- a social movement seeking a new way of considering agriculture and its relationship with society (IIED, 2014)

High potential for immediate, **multi-dimensional outcomes**, through integrated research, education, extension

- Regional history embedded in agriculture
- Statewide leader in the production of specialty crops
- Winter vegetables
- 350+ day growing season
- \$732 million annually – economic impact of \$1.6 B

Lower Rio Grande Valley

- National leader in food related diseases
- Largest coverage of urban food deserts
- 4 of 10 top poorest counties in the US
- Lowest percent of people who eat vegetables regularly

Participatory Action Research in Agroecology at UTRGV

Participatory assessment and planning

Partners

- Abundant Grace Farm
- Green Retros
- Freedom Harvest Farms
- Aurelia Consuelo Balthrop

What are the barriers to sustainable agriculture in south Texas?

Pest pressures

Weeds

Plant diseases

Weeds

- 1. Assess economically viable organic weeding methods
- 2. Investigate strategies that reduce weed build up and improve soil fertility

Pest pressures

- 1. Identify major pest and beneficial insects in organic vegetable systems in South Texas
- 2. Test agroecological practices that can prevent/reduce pest buildup

Identify major pest and beneficial insects in organic vegetable systems in South Texas

In a 2 acre plot of kale, we monitored:

- 1. Foliar arthropod pests and beneficials
- 2. Ground-dwelling pests and beneficials
- 3. Aerial pests and beneficials

Identify major pest and beneficial insects in organic vegetable systems in South Texas

Most abundant pests (foliar)

- 1. Green Peach Aphid
- 2. Cabbage Looper
- 3. Spotted Cucumber Beetle

Most abundant predators

- 1. Convergent ladybeetle
- 2. Pterostichus ground beetle
- 3. Pardosa wolf spider

Identify major pest and beneficial insects in organic vegetable systems in South Texas

BRASSICA PESTS & THEIR NATURAL ENEMIES

A FIELD GUIDE FOR TEXAS ORGANIC FARMERS

Test agroecological practices that can prevent/reduce pest buildup

Approach:

- Example potential of push-pull systems in brassica crops
- Compare Green peach aphid, beneficial arthropod abundance on neighboring kale

Green peach aphid

Dill and Fennel

Construcción de Invernadero Pequeño

by NCATATTRA

Subtropical Organic Agriculture Research (SOAR) Partnership Videos

by NCATATTRA • 8 videos • 63 views • Last updated on Sep 16, 2015

► Play all < Share - Save

The SOAR Partnership is led by the University of Texas-Rio Grande Valley (UTRGV) and National Center for Appropriate Technology (NCAT). Funding to create these videos was provided by the Organic Transitions Program of USDA's National Institute... more

	- Country - Country - Country	
WATCH.	Farm to Hospital in the Rio Grande Valley: Getting Ready by NCATATTRA	• Texas Organic Chronicles (1400+
watch	Organic Weed Removal Technique by NCATATTRA	members)
3	Small Hoop House Construction Trick by NCATATTRA	• SOAR Newsletter
4	Four Warm Season Cover Crops by NCATATTRA	 Advisory Board
5 WATCH	Five Benefits of Cover Crops by NCATATTRA	Electronic Listserv
6	Resultados Maravillosos Manteniendo Humedad con Mantillo de Paja by NCATATTRA	 Website (www.utrgv.edu/agroecology)
7	Amazing Water Holding Result from Straw Mulch by NCATATTRA	 Annual Meeting

Basic Heuristics for Participatory Agroecology Research and Training

PRELUDE: building social capital; preliminary situation analysis; know your strengths

1. Backward Design (Wiggins and McTighe 1998): What are the desired outcomes?

Do students as well as farmers/community benefit from collaboration and acquire skills, knowledge and abilities to handle new concerns, challenges, and opportunities?

Basic Heuristics for Participatory Agroecology Research and Training

PRELUDE: building social capital; preliminary situation analysis; know your strengths

- 1. Backward Design (Wiggins and McTighe 1998):
- 2. Look for things to try: identifying priorities; identifying 'best-bet' options from indigenous knowledge and scientific sources;
- 3. Design/implement experiments, monitoring and evaluation should all be participatory and collaborative
- 4. Share results through culturally and socially appropriate media—Student to farmer, farmer-to-farmer, farmer friendly social media

Hidalgo County:
 Highest concentration
 of organic farms in
 Texas

 Statewide leader in the production organic certified winter vegetables Lower Rio Grande Valley

- On-campus conversation about food systems sustainability
- Development of a degree program and research in sustainable food systems
 - Systems approach to sustainable food systems with network of different actors

Masters in

Agriculture,

Environment

Development of a degree program and research in sustainable food systems

UT Rio Grande Valley

Provided fellowships or internships to 7 graduates and 38 undergraduates (89%) identified as Hispanic/Latino

First certified

garden on

in the state

organic research

University Campus

Nationally recognized program in Agroecology and **Resilient Food** Systems

Sustainability and the

60% of reported agrelated jobs

undergraduates

LESSONS LEARNED

- Implement Strategic Planning
- Build Stronger Connections and Strategic Partnerships with Farms, schools, administrators, etc;
- Broaden Treatment of Agriculture in the Overall Curriculum, use locally relevant examples
- Broaden the Student Experience through innovative curricula, engaged scholarship, service learning
- Start Early—K-12 Outreach

- USDA-NIFA-ORG
- USDA-NIFA-HSI
- Southern SARE
- UTRGV COS
- UTRGV FM

alexis.racelis@utrgv.edu www.utrgv.edu/agroecology

- Collaborators at USDA-ARS/APHIS
- Subtropical Organic Agriculture Research Partner farms
- NCAT-San Antonio

